Keep two decimal places when it is applicable.

1. Find the sin, cos or tan value of each angle.

a)
$$\sin 30^{\circ} =$$
 _____ b) $\cos 45^{\circ} =$ ____ c) $\sin 55^{\circ} =$ ____ d) $\tan 67^{\circ} =$ ____

2. Find the angle for each sin, cos and tan value.

a)
$$\sin \theta = 0.219$$

b)
$$\cos \theta = 0.122$$

a)
$$\sin \theta = 0.219$$
 b) $\cos \theta = 0.122$ c) $\sin \theta = 0.857$ d) $\tan \theta = 2.53$

d)
$$\tan \theta = 2.53$$

$$\theta = \underline{\hspace{1cm}}$$

$$\theta =$$

$$\theta =$$

$$\theta =$$

3. What is the value of angle B for each triangle

a)

b)

4. Find the adjacent, opposite and hypotenuse sides.

For angle $\angle A$:

Adjacent side: _____

Opposite side: _____

Hypotenuse: _____

For angle $\angle B$:

Adjacent side:

Opposite side: _____

Hypotenuse: _____

5. Pythagorean Theorem

I.

$$a^2 =$$

П.

What is the length of c?

III.

What is the length of a?

IV.

What is the length of *b*?

6. Find the sin, cos and tan value, then the angles

$$\angle A = \sin^{-1}(\underline{\hspace{1cm}}) \qquad \angle B = \sin^{-1}(\underline{\hspace{1cm}})$$

$$\angle A = \cos^{-1}($$

$$= \underline{\qquad} = \underline{\qquad}$$

$$\angle A = \tan^{-1}(\underline{\qquad}) \qquad \angle B = \tan^{-1}(\underline{\qquad})$$

$$\angle B = \sin^{-1}(\underline{\hspace{1cm}})$$

$$= \underline{\qquad} = \underline{\qquad}$$

$$\angle A = \cos^{-1}(\underline{\qquad}) \qquad \angle B = \cos^{-1}(\underline{\qquad})$$

$$\angle B = \tan^{-1}($$

7. Find the missing pieces as indicated

١.

$$b = \underline{\hspace{1cm}}$$

$$c = \underline{\hspace{1cm}}$$

$$b = \underline{\hspace{1cm}}$$

Answer Key:

1.	a) =0.5	b) =0.707	c) =0.819	d) =2.356
	•	,		
2.	a) θ=12.65°	b) θ=82.99°	c) θ=58.98°	d) θ=68.43°
3.	a) ∠B=14.88°	b) ∠B=49.24°		
4.	For angle ∠A Adjacent side: b Opposite side: a Hypotenuse: c	For angle ∠B Adjacent side: b Opposite side: a Hypotenuse: c		
	Hypotenuse. c	rrypoteriuse. c		
5.	I. $c^2 = a^2 + b^2$ $c = \sqrt{a^2 + b^2}$	II. c=11.40	III. a=12	IV. b=35.78
	$a^2 = c^2 - b^2$ $a = \sqrt{c^2 - b^2}$			
6.	$\angle A = \sin^{-1}\left(\frac{6.4}{8.44}\right) = 49.31^{\circ}$		$\angle B = \sin^{-1}\left(\frac{5.5}{8.44}\right) = 40.67^{\circ}$	
	$\angle A = \cos^{-1}\left(\frac{5.5}{8.44}\right) = 49.33^{\circ}$		$\angle B = \cos^{-1}\left(\frac{6.4}{8.44}\right) = 40.69^{\circ}$	
	$\angle A = \tan^{-1}\left(\frac{6.4}{5.5}\right) = 49.33^{\circ}$		$\angle B = \tan^{-1}\left(\frac{5.5}{6.4}\right) = 40.67^{\circ}$	
7.	I. ∠B = 41.4°		II. ∠A = 50.54°	
	b = 16.09		a = 12.52	
	c = 24.33		b = 10.30	

